文本采样调研 – 文本生成

这个工作尝试使用文本生成的内容作为学习内容。看看这个思路是否具有可行性

文本生成的相关工具

MobileBERT
tensorflow 文本处理相关
https://www.tensorflow.org/tutorials/text/transformer

Gpt-2

Gpt-2 在线测试。
https://deepai.org/machine-learning-model/text-generator
https://transformer.huggingface.co/doc/distil-gpt2

Gpt-2 的测试结构表明:
没有fine-tune, 文本生成的内容绝对不能作为学习材料,因为可靠性太差。

Gpt-3

Gpt-3的测试
案例:用于媒体广告灵感生成
测试地址

像这样的生产,不是以文字打头,而是用基于内容的随机采样,是可以用于生成初始的讲解数据的
但是还是有大量不相干的内容采样。需要平台整理,

我意识到,文本生成的内容既不可控又不可靠。用于产生学习的内容, 其实需要的并不是文本采样工具。文本生成只是我接触到的相关的概念。但是我需要什么样的工具应该重新分析

VAE 和 SEQ2SEQ 的文本生成

  1. 【NLP笔记】文本生成基础与方案梳理
评:
* 指定关键词生成内容是可能的。
* 但是是不是总是生成
* 逻辑上是否合理,没有保证
* 但是只要有一些显然是合理的生成内容,就可以部分解决问题
  1. 文本生成概述

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注